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Abstract

Let G be a finite group. The non-commuting graph of G is a simple graph Γ(G) whose vertices
are elements ofG\Z(G), whereZ(G) is the center ofG, and two distinct vertices a and b are joint
by an edge if ab ̸= ba. In this paper, we study the non-commuting graph of the group U6n. The
independent number, clique and chromatic numbers of the non-commuting graph of the group
U6n, Γ(U6n), are determined. Additionally, the resolving polynomial, total eccentricity and in-
dependent polynomials of Γ(U6n) are computed. Finally, the detour and eccentric connectivity
indices of Γ(U6n) are found.
Keywords: non-commuting graph; independent number; chromatic number; clique number;

resolving polynomial of a graph.
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1 Introduction

In the last three decades, the interrelation of the structure in graphs and algebra has provided
us some interesting results and the topic has earned significant attention from the research com-
munity, for example, see [5, 17].

For a finite group G, the center of G and the centralizer of a ∈ G are denoted by Z(G) and
CG(a), respectively. The AC-group G is a group such that CG(a) is abelian for each a ∈ G\Z(G)
[17]. The Hungarian mathematician Paul Erdös [18] introduced the notion of the non-commuting
graph of a group in the way that the vertices are the non-central elements of a group and two
distinct vertices are joint by an edge if they do not commute in the group. He posed the problem
that for a group G whose non-commuting graph has no infinite complete subgraph, is it true
that there is a finite bound on the cardinalities of complete subgraphs of Γ(G)? Neumann [18]
answered Erdös’s question positively. Since then, the topic has beenwidely studied by researchers
in the field, Abdollahi et al. [1] explored how the graph theoretical properties of Γ(G) can affect
the group theoretical properties of G, while Vatandoost and Khalili [25] found the bounds of
domination number of the non-commuting graph of a finite groups. Furthermore, Romdhini et
al. [20] studied the neighbor degree sumenergy of the non-commuting graph for dihedral groups.
It is worth noting that if the underlying group is abelian, then the non-commuting graph has no
element since in that case the group is equal to its center. In this paper, we consider the non-
abelian group U6n, which will be defined later. As a matter of fact there are some researches
studying commuting graph of groups, for instance [3, 4], and there are some researches on the
commuting graph of the group U6n, see [10, 22, 11]. In addition, there are several articles about
the non-commuting graph of a group, for instance, Abdollahi et al. [1] investigated on the non-
commuting graph of finite groups whereas Talebi [24] has conducted the same investigation for
the dihedral groups. Furthermore, the energy of the non-commuting graph of the group U6n has
been studied in [12, 23].

Most recently, Khasraw et al. [16], considered the non-commuting graph, Γ(D2n) of dihedral
group. They found the detour index, eccentric connectivity and the total eccentricity polynomials,
and the mean distance of Γ(D2n).

Some fundamental concepts that are related to this research are provided in what follows.
Throughout the paper, all graphs are assumed to be simple, that is, there is no loops and multiple
edges. By a finite graph we mean a graph in which vertex set and edge set are finite. Hence, the
vertex-set and the edge-set of the graph Γ are denoted by V (Γ) and E(Γ), respectively, while we
denote the size of V (Γ) by n(Γ) and the size of E(Γ) by |E(Γ)|.

Let k ≥ 2. A sequence of k vertices in which every vertex in the sequence is linked to a vertex
next to it is known as a path of a graph, denoted by Pk. A simple path is a path that has no repeated
vertices. A path that starts and ends at the same vertex is referred to as a circuit while any circuit
that does not repeat vertices is a cycle, denoted as Cn, where n ≥ 3 [5, 7].

A graph is called connected if for any two vertices u and v, the path from u to v exists, while a
disconnected graph consists of connected pieces called components. If vertices u and v are connected
in Γ, the distance (detour distance) between u and v, will be denoted by d(u, v)(D(u, v)), is the length
of a shortest (longest) path from u to v in Γ. For a given vertex v in Γ, the maximum distance
between v and any other vertex in Γ is called the eccentricity of v, denoted by ecc(v). The degree of
a vertex v, deg(v), is the number of edges incident with v [5].

For a graph Γ, the polynomials D(Γ, q) =
∑

u,v∈V (Γ) q
D(u,v) [21], Ξ(Γ, q) =

∑
u∈V (Γ) degΓ(u)
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qecc(u) and Θ(Γ, q) =
∑

u∈V (Γ) q
ecc(u) [9] are called the detour, eccentric connectivity and total eccen-

tricity polynomials , respectively. The first derivative of D(Γ, q) at 1 is called the detour index of the
graph Γ, and denoted by dd(Γ).

By a regular graph we mean a graph in which all of its vertices have the same degree and a
graph is called n-regular if all of its vertices have degree n [5]. While the chromatic number of a
graph Γ, χ(Γ), is defined as the minimum number c for which is c-vertex colorable [13]. The clique
number of a graph Γ, ω(Γ), is defined to be the size of the largest complete subgraph of Γ. A vertex
cover of a graph Γ is a subset S of V (Γ) for which every edge of Γ has at least one vertex in S.
The minimum size of a vertex cover is denoted by τ(Γ) [19]. A non-empty set S of V (Γ) is called
independent if no two vertices in S are adjacent in Γ. The independent number is the cardinality of
a maximum independent set of a graph Γ and is denoted by α(Γ) [5]. Let Γ be a graph. The
independent polynomialwas defined in [14] as follows: I(Γ, q) = ∑α(Γ)

i=0 siq
i; where si is the number

of independent sets of Γ of cardinality i. While, in [8], the vertex-cover polynomial is defined as
ψ(Γ, q) =

∑n(Γ)
i=0 ciq

i; where ci is the number of vertex covers of Γ of cardinality i.

For an integer k ≥ 2, a graph Γ is called k-partite if V (Γ) can be partitioned into k classes such
that the end vertices of each edge lie in different classes, and no two vertices in the same class are
adjacent. If any two vertices from different classes are adjacent, then the graph is called complete
k-bipartite graph, and denoted byKr1,r2,··· ,rk .

Let Γ be a graph. Suppose W = {w1, w2, · · · , wk}, where k ≤ n(Γ), is a subset of V (Γ). The
representation of a vertex v of Γ is the k-vector r(v|W ) = (d(v, w1), d(v, w2), · · · , d(v, wk)). If every
pair of distinct vertices of Γ have distinct representations with respect to W , then W is called a
resolving set for Γ. The cardinality of a minimum resolving set for Γ is called the metric dimension
of Γ, denoted by β(Γ) [6]. The resolving polynomial of a graph Γ, denoted by β(Γ, q), is defined
by β(Γ, q) =

∑n(Γ)
i=β(Γ) riq

i, where ri is the number of resolving sets for Γ of cardinality i. The
sequence (rβ(Γ), rβ(Γ)+1, · · · , rnΓ) is called the resolving sequence. The set of all distinct roots of
β(Γ, q) is denoted by Z(β(Γ, q)).

The group U6n, of order 6n, is defined by

U6n = ⟨a, b | a2n = b3 = 1, a−1ba = b−1⟩,

for n ≥ 1with center Z(U6n) = ⟨a2⟩ [15]. Throughout this paper, the elements of U6n\Z(U6n) are
partitioned into four disjoint sets according to centralizers of elements, see Lemma 2.1, as follows:
Ω1 = {a2r+1 : 0 ≤ r ≤ n − 1}, Ω2 = {a2r+1b : 0 ≤ r ≤ n − 1}, Ω3 = {a2r+1b2 : 0 ≤ r ≤ n − 1},
and Ω4 = {a2rbk : 0 ≤ r ≤ n− 1, k = 1, 2}. It is clear that |Ω1| = |Ω2| = |Ω3| = n, and |Ω4| = 2n.
Note that, throughout the paper, Γ(U6n) indicates the non-commuting graph of the group U6n.

The paper consists of four sections. The first section is introduction, where the necessary con-
cepts are presented. Some basic properties of Γ(U6n) of U6n are studied in Section 2. In Section 3,
we find the resolving polynomial of Γ(U6n), while in Section 4, the detour index, eccentric connec-
tivity, total eccentricity and independent polynomials of Γ(U6n) are computed.

2 Some Properties of Γ(U6n)

This section contains some lemmas on non-commuting graph that are used to obtain some
important results that follow.
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In [17], the following lemma had been shown.
Lemma 2.1. For the group U6n, and 0 ≤ r ≤ n− 1, we have the following

1. Z(U6n) = ⟨a2⟩,
2. CU6n

(a2r+1) = ⟨a⟩,
3. CU6n

(a2r+1b) = ⟨a2⟩ · ⟨{a2s+1b : 0 ≤ s ≤ n− 1}⟩,
4. CU6n(a

2r+1b2) = ⟨a2⟩ · ⟨{a2s+1b2 : 0 ≤ s ≤ n− 1}⟩,
5. CU6n

(a2rb) = ⟨a2⟩ · ⟨{a2sb, a2sb2 : 0 ≤ s ≤ n− 1}⟩.

The following useful lemma is used in calculating the degree of vertices in Γ(U6n), which can be
found in [1].
Lemma 2.2. SupposeG is a non-abelian finite group and let x ∈ V (Γ(G)). Then, deg(x) = |G|−|CG(x)|,
where CG(x) is the centralizer of the element x in G.

The above lemmas lead to the following.
Corollary 2.1. Let n ≥ 1 be an integer and let Γ = Γ(U6n). Then, for 0 ≤ r ≤ n − 1 and k = 1, 2, we
have

1. degΓ(a2r+1) = 4n,
2. degΓ(a2r+1bk) = 4n,
3. degΓ(a2rbk) = 3n.

Theorem 2.1. For n ≥ 1, Γ = Γ(U6n), |E(Γ)| = 9n2.

Proof. From Corollary 2.1, we have |E(Γ)| = 1
2

∑
x∈V (Γ) deg(x) =

1
2

(
12n2 + 6n2

)
= 9n2.

Theorem 2.2. For n ≥ 1, let Γ = Γ(U6n) and Ω is a subset of U6n. Then, Γ = Kn,n,n,2n, the 4-partite
graph, if and only if Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4.

Proof. AssumeΩ = Ω1∪Ω2∪Ω3∪Ω4. Then, CΩ(a
2r+1) = Ω1, CΩ(a

2r+1b) = Ω2, CΩ(a
2r+1b2) = Ω3

and CΩ(a
2rbk) = Ω4 for k = 1, 2, so Γ = Kn,n,n,2n. Conversely, assume Γ = Kn,n,n,2n, then by

Corollary 2.1, Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4.

In [5], the relation between the independent number and the vertex cover with the number of
vertices has been given as follows.
Lemma 2.3. Let Γ be a graph. Then, α(Γ) + τ(Γ) = n(Γ).

Theorem 2.3. For the graph Γ = Γ(U6n), α(Γ) = 2n.
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Proof. From Lemma 2.1 and Theorem 2.2, one can see that Ω4 is the largest part of the 4-partite
graphKn,n,n,2n. Thus, α(Γ) = 2n.

Corollary 2.2. For the graph Γ = Γ(U6n), τ(Γ) = 3n.

Proof. The proof is a straightforward from Lemma 2.3 and Theorem 2.3.

Theorem 2.4. Let Γ = Γ(U6n). Then, χ(Γ) = ω(Γ) = 4.

Proof. By Theorem 2.2, the clique of Γ can only contain one vertex from each Ωi(i = 1, ..., 4).
Therefore, ω(Γ) = 4. Since the group U6n is an AC-group, then χ(Γ) = ω(Γ).

Theorem 2.5. Let Γ = Γ(U6n), and Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4. There exist no subset S of Ω such that
Γ = C5.

Proof. Suppose that Γ = C5. Then, at least two vertices, say v1 and v2, on Γ belong to some Ωi for
i ∈ {1, 2, 3, 4}. Three cases have to be considered. Case 1. If the other three vertices belong to Ωj ,
j ∈ {1, 2, 3, 4} and j ̸= i, then Γ = K2,3, which is a contradiction. Case 2. If two of the other three
vertices belong to the same Ωj and the third one belongs to Ωk, where j ̸= i ̸= k, then Γ = K2,2,1,
which is also a contradiction. Case 3. If each of the other three vertices belongs to a different Ωj ,
j ∈ {1, 2, 3, 4} and j ̸= i, then Γ = K2,1,1,1, which is again a contradiction.

Theorem 2.6. Let Γ = Γ(U6n), and Ω is a subset of V (Γ). Then, Γ ̸= Pk for k ≥ 4.

Proof. For k < 4, we show that, Γ = P2 or P3.
Case 1. Ω = {x, y} where x /∈ CU6n

(y), then Γ = P2. Case 2. Let Ω = {x, y, z} where x /∈ CU6n
(y).

If z /∈ CU6n
(x) and z /∈ CU6n

(y) then Γ = C3. But if z is either in CU6n
(x) or CU6n

(y) then Γ = P3.
If we add one more element, say w, to Ω then we have two possibilities; either w /∈ CU6n(x) and
w /∈ CU6n(y), and this implies that there will be edges w ∼ x and w ∼ y, which means Γ ̸= P4, or
w is in the centralizer of one of them, in this case say w ∈ CU6n

(x), implies that there will be an
edge w ∼ y, which again means Γ ̸= P4.

Theorem 2.7. Let Γ = Γ(U6n), and let Ω be a subset of V (Γ). Then, Γ is 2n-regular if and only if
Ω = Ω1 ∪ Ω2 ∪ Ω3.

Proof. If the graph Γ is 2n-regular, then every vertex in Γ has degree 2n. By Corollary 2.1, Ω =
Ω1 ∪Ω2 ∪Ω3. Conversely, let Ω = Ω1 ∪Ω2 ∪Ω3. By Corollary 2.1, deg(u) = 2n for all u ∈ Ω. Thus,
Γ is a 2n-regular graph.

495



S. M. S. Khasraw et al. Malaysian J. Math. Sci. 18(3): 491–500 (2024) 491 - 500

3 Resolving Polynomial of Γ(U6n)

The main aim of this section is to determine the metric dimension and resolving polynomial
of Γ(U6n). We start by the following useful lemma about resolving polynomial β(Γ, q) of a graph
Γ of order n.
Lemma 3.1. Let Γ be a connected graph such that n(Γ) = n. Then, Γ has only one resolving set of
cardinality n, which is V (Γ), and n resolving sets of cardinality n− 1.

Theorem 3.1. Let Γ = Γ(U6n). Then,

β(Γ) =

{
3 if n = 1,

5n− 4 if n > 1.

Proof. Case 1. When n = 1. The graph Γ is split with 5 vertices such that V (Γ) = K ∪ S, where
K = {a, ab, ab2} is the complete part and S = {b, b2} is the independent part. The resolving set for
Γ of minimal cardinality isW = {a, ab, b}. Case 2. When n > 1. Since every two distinct vertices u
and v are non-adjacent in Ωi, i ∈ {1, 2, 3, 4}, then β(Γ) ≥ 5n− 4. On the other hand, it is clear that
the setW = {a2r+1, a2r+1b, a2r+1b2; 0 ≤ r ≤ n− 2} ∪ Ω4\{x}, where x is any particular element
in Ω4, is the resolving set for Γ of cardinality 5n− 4. This implies that β(Γ) ≤ 5n− 4.

Theorem 3.2. Let Γ = Γ(U6n). Then,

β(Γ, q) =

{
q3(q + 2)(q + 3) if n = 1,

q5n−4(q + n)3(q + 2n) if n > 1.

Proof. For n, there are two cases to be considered:

• When n = 1. Then, Γ = Γ(U6). By Theorem 3.1, we need to compute the resolving sequence
(r3, r4, r5) of length 3. Since the graph Γ is split with 5 vertices where its complete part
consists of 3 vertices and the independent part consists of 2 vertices, then r3 =

(
2
1

)(
3
2

)
= 6.

By Lemma 3.1, r4 = 5 and r5 = 1.
• When n > 1. By Theorem 2.2, the graphΓ is 4-partite. By Theorem 3.1, we need to determine

the resolving sequence (r5n−4, r5n−3, r5n−2, r5n−1, r5n) of length 5.

For r5n−4: By Theorem 2.2 and by the multiplication’s principal,

r5n−4 =

(
n

n− 1

)(
n

n− 1

)(
n

n− 1

)(
2n

2n− 1

)
= 2n4.

For r5n−3: It is required to compute all the resolving sets for Γ of cardinality 5n− 3. There are
four cases, in the first case, (nn)( n

n−1

)(
n

n−1

)(
2n

2n−1

); in the second case, ( n
n−1

)(
n
n

)(
n

n−1

)(
2n

2n−1

); in the
third case, ( n

n−1

)(
n

n−1

)(
n
n

)(
2n

2n−1

); and in the fourth case, ( n
n−1

)(
n

n−1

)(
n

n−1

)(
2n
2n

) possible resolving
sets of cardinality 5n− 3. By the addition’s principal, r5n−3 = 7n3.
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For r5n−2: We need to compute all the resolving sets for Γ of cardinality 5n−2. Again, we have
six cases to consider, in the first case, (nn)(nn)( n

n−1

)(
2n

2n−1

); in the second case, (nn)( n
n−1

)(
n
n

)(
2n

2n−1

); in
the third case, (nn)( n

n−1

)(
n

n−1

)(
2n
2n

); in the fourth case, ( n
n−1

)(
n
n

)(
n
n

)(
2n

2n−1

); in the fifth case, ( n
n−1

)(
n
n

)(
n

n−1

)(
2n
2n

); and in the sixth case, ( n
n−1

)(
n

n−1

)(
n
n

)(
2n

2n−1

); possible resolving sets of cardinality 5n−2.
By the addition’s principal, r5n−2 = 9n2. By Lemma 3.1, r5n−1 = 5n and r5n = 1.

Corollary 3.1. Let Γ = Γ(U6n). Then, for n = 1, Z(β(Γ, q)) = {0,−2,−3}, and for all n > 1,
Z(β(Γ, q)) = {0,−n,−2n}.

4 Some Polynomials of Γ(U6n)

In this section some properties of non-commuting graphs of U6n are explored, namely the
detour, the eccentric connectivity, the total eccentricity and the independent polynomials.
Lemma 4.1. Let Γ(U6n). Then, D(u, v) = 5n− 1 for any u, v ∈ V (Γ).

Proof. From Theorem 2.2, one can see that no two vertices in Ωi are adjacent, and every vertex in
Ωi is adjacent to each vertex in Ωj for i ̸= j and i, j ∈ {1, 2, 3, 4}. Then, for all u, v ∈ Ω, where
Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4, there is a path of length 5n− 1 from u to v.

Theorem 4.1. Let Γ = Γ(U6n). Then, D(Γ, q) = 5n(5n−1)
2 q5n−1.

Proof. We have that n(Γ) = 5n. Then, there are (5n2 ) = 5n(5n−1)
2 possibilities of choosing any two

distinct vertices from Γ. By Lemma 4.1, D(u, v) = 5n − 1 for any distinct pairs of u, v ∈ V (Γ).
Thus, D(Γ, q) =

∑
{u,v} q

D(u,v) =
(
5n
2

)
q5n−1 = 5n(5n−1)

2 q5n−1.

The direct result from Theorem 4.1 is the following.

Corollary 4.1. Let Γ(U6n). Then, dd(Γ(U6n)) =
5n(5n−1)2

2 .

Lemma 4.2. Let Γ(U6n). Then, ecc(u) = 2 for every u ∈ Ω, where Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4.

Proof. InΩi, there is no edge between any pair of distinct vertices, for i ∈ {1, 2, 3, 4}. Furthermore,
every vertex in Ωi is adjacent to each vertex in Ωj , for i ̸= j and i, j ∈ {1, 2, 3, 4}. Then, the
maximum distance between any vertex in Ωi and other vertices in Ω is 2. Therefore, ecc(u) = 2,
for every u ∈ Ω.

Theorem 4.2. Let Γ = Γ(U6n) and Ω = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4. Then,

1. Θ(Γ, q) = 5nq2.
2. Ξ(Γ, q) = 18n2q2.
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Proof. Since the graph Γ has 5n vertices, then

1. By Lemma 4.2, ecc(u) = 2, for every u ∈ Ω, so Θ(Γ, q) =
∑

u∈V (Γ) q
ecc(u) = 5nq2.

2. By Corollary 2.1, 3n vertices in Ω1 ∪ Ω2 ∪ Ω3 are of degree 4n and 2n vertices in Ω4 are of
degree 3n, and from Lemma 4.2, we see that Ξ(Γ, q) = ∑

u∈V (Γ) degΓ(u)q
ecc(u) = (3n(4n) +

2n(3n))q2 = 18n2q2.

Theorem 4.3. Let Γ = Γ(U6n). Then, the independent polynomial is as follows:

I(Γ; q) = 1 +

n∑
k=1

((
2n

k

)
+ 3

(
n

k

))
qk +

2n∑
k=n+1

(
2n

k

)
qk.

Proof. By Theorem 2.3, α(Γ) = 2n. Then, I(Γ; q) = ∑2n
k=0 skq

k. It is easy to see that s0 = 1 since the
only independent set of cardinality zero is the empty set. Moreover, we have three independent
sets, Ω1,Ω2 and Ω3, each of cardinality n and one independent set, Ω4, of cardinality 2n. Thus,
there are sk = 3

(
n
k

)
+

(
2n
k

) possibilities of independent sets of cardinality k for 1 ≤ k ≤ n, and
sk =

(
2n
k

) possibilities of independent sets of cardinality k for n < k ≤ 2n. Then, the result
follows.

Corollary 4.2. Let Γ = Γ(U6n). Then, the vertex-cover polynomial is as follows:

ψ(Γ; q) = q5n +

n∑
k=1

((
2n

k

)
+ 3

(
n

k

))
q5n−k +

2n∑
k=n+1

(
2n

k

)
q5n−k.

Proof. It is a straightforward from Theorem 4.3 and by the result ψ(Γ, q) = qn(Γ)I(Γ, q−1) [2].

5 Conclusions

In this paper, some properties of the non-commuting graph of the group U6n is presented. The
general formula of the resolving polynomial of the non-commuting graph of the group U6n are
provided. In the last section of this paper, we also provided the detour index, eccentric connectiv-
ity, total eccentricity and independent polynomials of non-commuting graphs on U6n.
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